李默有点看不明白,这里运用的数学知识大部分他还没有掌握。
算了,看下一个问题吧。
BSD猜想
2.庞加莱猜想,任何一个封闭的三维空间,只要它里面所有的封闭曲线都可以收缩成一点,这个空间就一定是一个三维圆球
。。。。。。。。。。。
。。。。。。。。。。。
这道题的题目都无法理解。。下一道。
3.霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
。。。。。。。。。。。
。。。。。。。。。。。
题目中的汉字他都认识,怎么连在一起就看不明白了呢?
。。。。。。。。。。。
。。。。。。。。。。。
这一道题目不会,这一道看不懂,这一道题的题目是什么意思??
.........李默脸色难看起来,想起来他数学还只有二级,利用高中知识试图解决一个未解难题真的太难了。
。。。。。。。。。
那些看不懂名字的题目直接放弃,只挑选高中数学范围以内的。李默加快了“翻页”速度。
终于,他找到了一个完全符合高中知识范围的问题。
考拉兹猜想,又称为3n+1猜想,角谷猜想,哈塞猜想,乌拉姆猜想或叙拉古猜想。
是指对于每一个正整数,如果它是奇数,则对它乘3再加1,如果它是偶数,则对它除以2,如此循环,最终都能够得到1.
考拉兹猜想,亦可以叫“奇偶归一猜想“.
在1930年,德国汉堡大学的学生考拉兹,曾经研究过这个猜想,因而得名。
“正整数”,“偶数”,奇数。棒极了,很简单,完全看得明白。
要想一个正整数,设这个数为x接下来这个数倘若是奇数,那么就将它乘三加一,即3x+1,倘若x为偶数,那么就将它除以二,即x÷2,那么这个数最后一定会经过4、2变为1。
如果设想的数是3,那么就是3×3+1=10,10÷2=5,5×3+1=16,16÷2=8,8÷2=4,4÷2=2,2÷2=1。
李默拿笔验算了一下题目内容,完全正确,可是怎么证明呢?
归纳法。。不行。
利用定理直接证明。。。不行。
唰。。唰。。唰。。
一张纸。。两张纸。。三张纸。。
一小时。。两小时。。三小时。。