笔趣阁 > 科幻小说 > 学霸的科幻世界 > 第四百八十三章 研究方向

第四百八十三章 研究方向(3 / 4)

这天晚上(依旧保留了地球上的二十四小时时间制),做完运动,庞学林搂着慕青青去飞船上的淋浴房洗了个澡,慕青青疲惫地沉沉睡去,庞学林却一时半会儿睡不着,干脆来到了自己的小书房,铺开稿子开始自己的研究。

因为空间以及所能携带的质量有限,因此,方舟一号上面并没有携带多少实验设备。

搞不了大型科学实验,庞学林只好将注意力重新放在了数学猜想的研究上面。

迄今为止,庞学林已经完成了BSD猜想,ABC猜想,孪生素数猜想,波利尼亚克猜想,霍奇猜想的证明工作。

接下来的重量级猜想所剩并不算多,有P与NP问题,杨-米尔斯存在性和质量缺口,纳卫尔-斯托可方程的存在性与光滑性,大名鼎鼎的黎曼猜想,以及号称迄今为止难度最高的数学猜想哥德巴赫猜想。

P与NP问题实际上是一种逻辑运算问题。

打个简单的彼方,在一个周六的晚上,你参加了一个盛大的晚会。

由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。

宴会的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。

不费一秒钟,你就能向那里扫视,并且发现宴会的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。

这代表了一个现象,即生成问题的一个解通常比验证一个给定的解时间花费要多得多。

这是这种一般现象的一个例子。

与此类似的是,如果某人告诉你,数13717421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。

人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。

既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?

这就是著名的NP=P的猜想。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。

而杨-米尔斯存在性和质量缺口,量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。

大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。

基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和驻波。

尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。

特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。

在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。

至于纳卫尔-斯托可方程的存在性与光滑性,则是流体力学领域问题。

起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。

数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。

最新小说: 篮球少年,从灌篮炸框开始闪耀 开局夺取BOSS模板 团宠崽崽上房揭瓦指南 医妃宠冠天下 诡秘:整个好活之主 战锤:憧憬成为星际战士 网游:身为奶爸一刀999很合理吧? 网游之奇货可居 网游之箭神无双 诡异复苏:我能联系过去